

# SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

(AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

#### **QUESTION BANK (DESCRIPTIVE)**

Subject with Code: Data Structures & Algorithms (23CI0601)

**Regulation:** R23

Course & Branch: B.Tech – CSIT

Year & Sem: II Year & I Sem

#### UNIT-I INTRODUCTION, AVL TREES, B-TREES

| 1  | a) | What do you mean by algorithm? List some of the properties of it.                                       | [L1] [CO1] | [2M]  |
|----|----|---------------------------------------------------------------------------------------------------------|------------|-------|
|    | b) | Discuss the steps involved in performance analysis.                                                     | [L2] [CO1] | [2M]  |
|    | c) | Define Balance Factor.                                                                                  | [L2] [CO1] | [2M]  |
|    | d) | What is an AVL tree? Give one example.                                                                  | [L1] [CO1] | [2M]  |
|    | e) | What is B-Tree? Give one example.                                                                       | [L1] [CO1] | [2M]  |
| 2  | a) | Illustrate an algorithm for Finding sum of natural number.                                              | [L2] [CO1] | [5M]  |
|    | b) | Analyze space complexity and time complexity in detail with example.                                    | [L4] [CO1] | [5M]  |
| 3  |    | What is Asymptotic Notation? Explain different types of notations with examples.                        | [L2] [CO1] | [10M] |
| 4  |    | Discuss briefly with suitable example about Big 'O' notation and Theta notation ' $\Theta$ '.           | [L2] [CO1] | [10M] |
| 5  | a) | Discuss factors affecting the time complexity.                                                          | [L2] [CO1] | [5M]  |
|    | b) | Compare between Priori analysis and Posteriori analysis.                                                | [L4] [CO1] | [5M]  |
| 6  |    | Explain different AVL rotations with suitable examples.                                                 | [L2] [CO1] | [10M] |
| 7  | a) | Write the applications and operations of an AVL tree.                                                   | [L3] [CO1] | [5M]  |
|    | b) | Define the Balance Factor of a node in an AVL tree. How is it calculated, and what is its significance? | [L2] [CO1] | [5M]  |
| 8  |    | Construct an AVL Tree by inserting numbers from 1 to 8.                                                 | [L6] [CO1] | [10M] |
| 9  | a) | Write the applications and Operations of the B-Tree.                                                    | [L3] [CO1] | [5M]  |
|    | b) | Elaborate the B-Tree Deletion Operation with suitable example.                                          | [L3] [CO1] | [5M]  |
| 10 |    | Construct a B-Tree of order 3 by inserting numbers 1 to 10.                                             | [L3] [CO1] | [10M] |



## UNIT –II HEAP TREES, GRAPHS, DIVIDE AND CONQUER

| 1  | a)         | Define Heapify.                                                                                                                                                                                         | [L2][CO2] | [2M]  |
|----|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------|
|    | b)         | List out the applications of Heap tree.                                                                                                                                                                 | [L1][CO2] | [2M]  |
|    | <b>c</b> ) | What is directed and undirected graph?                                                                                                                                                                  | [L1][CO2] | [2M]  |
|    | <b>d</b> ) | Define Articulation point?                                                                                                                                                                              | [L2][CO2] | [2M]  |
|    | <b>e</b> ) | Construct Strassen's 2×2 matrix.                                                                                                                                                                        | [L3][CO2] | [2M]  |
| 2  | a)         | Explain in detail about operations of Heap Tree.                                                                                                                                                        | [L2][CO2] | [5M]  |
|    | b)         | Construct Max Heap Tree for the following elements 32, 15, 20, 30, 12, 25, 16.                                                                                                                          | [L3][CO2] | [5M]  |
| 3  |            | Draw the Spanning Tree for the given graph using DFS and BFS algorithm.                                                                                                                                 | [L1][CO2] | [10M] |
|    |            |                                                                                                                                                                                                         |           |       |
| 4  | a)         | Compare between Min heap and Max heap.                                                                                                                                                                  | [L2][CO2] | [5M]  |
|    | b)         | Explain Graph representations with suitable example.                                                                                                                                                    | [L2][CO2] | [5M]  |
| 5  |            | Explain Graph Traversal techniques with neat example.                                                                                                                                                   | [L2][CO2] | [10M] |
| 6  | a)         | Discuss Connected components and Bi-connected components along with Applications.                                                                                                                       | [L2][CO2] | [5M]  |
|    | b)         | Sort the records with the following index values in the ascending order using Quick Sort algorithm, 10,80,30,90,40,50 and 60.                                                                           | [L2][CO2] | [5M]  |
| 7  |            | Analyze the working strategy of merge sort and illustrate the process of Merge Sort algorithm for the given data: 43, 32, 22, 78, 63, 57, 91 and 13.                                                    | [L4][CO2] | [10M] |
| 8  |            | Summarize an algorithm for quick sort. Provide a complete analysis of quick sort for given set of numbers 40,20,70,14,60,61,97 and 30.                                                                  | [L3][CO2] | [10M] |
| 9  | a)         | Explain the General Method of Divide and Conquer Method.                                                                                                                                                | [L2][CO2] | [5M]  |
|    | b)         | Explain about Convex Hull with example.                                                                                                                                                                 | [L2][CO2] | [5M]  |
| 10 |            | $A = \begin{bmatrix} 9 & 4 & 6 & 7 \\ 7 & 8 & 1 & 4 \\ 4 & 3 & 2 & 6 \\ 5 & 3 & 0 & 2 \end{bmatrix} B = \begin{bmatrix} 7 & 6 & 2 & 1 \\ 3 & 9 & 0 & 3 \\ 2 & 5 & 2 & 9 \\ 3 & 2 & 4 & 7 \end{bmatrix}$ | [L6][CO2] | [10M] |
|    |            | Create Stassen's matrix multiplication on A and B. Find the resultant matrix.                                                                                                                           |           |       |

### UNIT –III

## **GREEDY METHOD, DYNAMIC PROGRAMMING**

|   |            |                                                                                                                                                                                                                    | 1         |                |
|---|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------|
| 1 | a)         | Define greedy method.                                                                                                                                                                                              | [L2][CO2] | [2M]           |
|   | b)         | Discuss the disadvantages of greedy method.                                                                                                                                                                        | [L2][CO2] | [2M]           |
|   | c)         | What is Spanning Tree?                                                                                                                                                                                             | [L1][CO2] | [2M]           |
|   | <b>d</b> ) | What is 0/1 knapsack problem.                                                                                                                                                                                      | [L1][CO2] | [2M]           |
|   | e)         | Explain dynamic programming.                                                                                                                                                                                       | [L2][CO2] | [2M]           |
| 2 | a)         | Solve job sequencing with deadlines by using greedy method where given<br>the jobs, their deadlines and associated profits as shown below. Calculate<br>maximum earned profit.                                     | [L3][CO3] | [5M]           |
|   |            | Jobs J1 J2 J3 J4 J5 J6                                                                                                                                                                                             |           |                |
|   |            | <b>Deadlines</b> 5 3 3 2 4 2                                                                                                                                                                                       |           |                |
|   |            | Profits         200         180         190         300         120         100                                                                                                                                    |           |                |
|   | b)         | Build any one application of dynamic programming with an example.                                                                                                                                                  | [L3][CO1] | [5M]           |
| 3 |            | Construct an optimal solution for Knapsack problem, where $n=7,M=15$ and $(p1,p2,p3,p4,p5,p6,p7) = (10,5,15,7,6,18,3)$ and $(w1,w2,w3,w4,w5,w6,w7) = (2,3,5,7,1,4,1)$ by using Greedy strategy.                    | [L3][CO3] | [10M]          |
| 4 |            | Implement the Single Source Shortest Path using Dijkstra's algorithm for the given graph.<br>$\boxed{\begin{array}{c} 4 \\ 0 \\ 8 \\ 7 \\ 1 \\ 1 \\ 7 \\ 6 \\ 2 \\ 5 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$ | [L4][CO3] | [ <b>10M</b> ] |
| 5 |            | What is Minimum Cost Spanning Tree? Implement the Kruskal's algorithm and Prims algorithm.                                                                                                                         | [L1][CO3] | [10M]          |
|   |            | $\begin{array}{c} \begin{array}{c} & b \\ & a \\ & 11 \\ & a \\ & 11 \\ & 7 \\ & b \\ & h \\ & 1 \\ & 1 \\ & g \\ & 2 \\ \end{array} \begin{array}{c} 7 \\ & d \\ & 14 \\ & e \\ & 10 \\ & 10 \\ \end{array}$      |           |                |
| 6 |            | Construct optimal binary search tree for the given problem $n=4,(a1,a2,a3,a4)=(a,b,c,d), P(1,2,3,4,)=(3,3,1,1), Q(0,1,2,3,4)=(2,3,1,1,1).$                                                                         | [L6][CO3] | [10M]          |
| 7 |            | Solve Single Source Shortest Paths problem using dynamic programming.                                                                                                                                              | [L3][CO3] | [10M]          |
|   |            | A y C 3<br>5 72 F                                                                                                                                                                                                  |           |                |

| Course Code: 23CI0601 |    |                                                                                                                                                                                                                                                                 | <b>R23</b> |       |
|-----------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------|
| 8                     | a) | Explain 0/1 knapsack problem by using dynamic programming with an examples.                                                                                                                                                                                     | [L2][CO3]  | [5M]  |
|                       | b) | Measure the String Editing problem with example.                                                                                                                                                                                                                | [L5][CO3]  | [5M]  |
| 9                     |    | Construct an algorithm for All pairs of shortest path and calculate shortest path between all pairs of vertices by using dynamic programming method for the following graph.                                                                                    | [L6][CO3]  | [10M] |
| 10                    |    | Analyze the minimum cost tour for given problem in travelling sales person<br>Concepts by using dynamic programming.<br>$\qquad \qquad $ | [L4][CO3]  | [10M] |



### UNIT –IV BACKTRACKING, BRANCH AND BOUND

| 1  | \<br>\     |                                                                                       |           |       |
|----|------------|---------------------------------------------------------------------------------------|-----------|-------|
| 1  | a)         | Define Backtracking.                                                                  | [L2][CO2] | [2M]  |
|    | b)         | Solve 4-Queens problem.                                                               | [L1][CO2] | [2M]  |
|    | c)         | What is Graph coloring?                                                               | [L2][CO2] | [2M]  |
|    | d)         | What is Branch and Bound?                                                             | [L1][CO2] | [2M]  |
|    | e)         | State the Container problem.                                                          | [L2][CO2] | [2M]  |
| 2  | a)         | Consider a set $S = \{5,10,12,13,15,18\}$ and $d=30$ . Solve it for obtaining Sum     | [L6][CO4] | [5M]  |
|    | 1          | of Subset using Backtracking method.                                                  |           |       |
|    | b)         | Recall the Graph Coloring. Explain in detail about graph coloring with an example     | [L3][CO4] | [5M]  |
| 3  |            | Describe how the backtracking method is applied to solve the 8-Queens                 | [L5][CO4] | [10M] |
|    |            | problem.                                                                              |           |       |
| 4  |            | Compare Back Tracking and Branch and Bound methods by taking an example.              | [L4][CO4] | [10M] |
| 5  |            | Construct the State space tree for the profits={3,5,6,10} and                         | [L3][CO4] | [10M] |
|    |            | weights={2,3,4,5},n=4 and m=8 (Capacity). Apply the backtracking for 0/1              |           |       |
|    |            | Knapsack and also find the Maximum profit.                                            |           |       |
| 6  | a)         | Solve 4 – queens problem by generating state space tree .                             | [L3][CO4] | [5M]  |
|    | b)         | Explain the principles of LIFO branch and bound.                                      | [L2][CO4] | [5M]  |
| 7  |            | Find the LC branch and bound solution for the traveling sale person problem           | [L4][CO4] | [10M] |
|    |            | whose cost matrix is as follows:                                                      |           |       |
|    |            | 1 2 3 4 5                                                                             |           |       |
|    |            | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                 |           |       |
|    |            |                                                                                       |           |       |
|    |            | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                  |           |       |
|    |            | 4 19 6 18 ∞ 3                                                                         |           |       |
|    |            | 5 <b>[16 4 7 16 ∞</b> ]                                                               |           |       |
| 8  |            | Simplify 0/1 knapsack problem and design an algorithm of LC Branch and                | [L4][CO4] | [10M] |
|    |            | Bound and find the solution for the knapsack instance of $n = 4,(p1, p2, p3, p3, p3)$ |           |       |
|    |            | p4) = (10, 10, 12, 18), (w1,w2, w 3, w4) = (2, 4, 6, 9) and M = 15.                   |           |       |
| 9  | a)         | Explain the procedure for Travelling Sales Person Problem using branch and bound.     | [L2][CO4] | [5M]  |
|    | b)         | Explain the principles of FIFO branch and bound.                                      | [L2][CO4] | [5M]  |
| 10 | <b>a</b> ) | Describe the general method of branch and bound.                                      | [L1][CO4] | [5M]  |
| 10 |            |                                                                                       |           |       |

#### UNIT –V

#### NP HARD AND NP COMPLETE PROBLEMS

| 1  | a)         | Define P class and NP Class.                                                              | [L2][CO2] | [2M]  |
|----|------------|-------------------------------------------------------------------------------------------|-----------|-------|
|    | b)         | What are NP complete and NP Hard?                                                         | [L1][CO2] | [2M]  |
|    | c)         | State deterministic algorithm?                                                            | [L1][CO2] | [2M]  |
|    | d)         | Discuss about Non-deterministic algorithm?                                                | [L2][CO2] | [2M]  |
|    | <b>e</b> ) | What is Chromatic Number?                                                                 | [L1][CO2] | [2M]  |
| 2  | a)         | Explain and shows the relationship between P,NP,NP Hard and NP Complete with neat diagram | [L2][CO5] | [5M]  |
|    | b)         | Summarize non deterministic algorithm with an example.                                    | [L3][CO5] | [5M]  |
| 3  | a)         | Determine the classes NP-hard and NP-complete problem with example.                       | [L3][CO5] | [5M]  |
|    | b)         | Illustrate the Satisfiability [SAT] problem.                                              | [L3][CO5] | [5M]  |
| 4  | a)         | State and Explain Cook's theorem.                                                         | [L1][CO5] | [5M]  |
|    | b)         | How to make reduction for 3-SAT to Clique Decision problem? and Explain                   | [L1][CO5] | [5M]  |
| 5  |            | Explain why Clique Decision Problem is NP-hard with suitable an example.                  | [L2][CO5] | [10M] |
| 6  |            | Explain why Chromatic Number Decision Problem is NP-hard in detail with an example.       | [L2][CO5] | [10M] |
| 7  | a)         | Build Traveling salesperson Decision Problem with example.                                | [L3][CO5] | [5M]  |
|    | b)         | Discuss about Chromatic Number Decision Problem in detail.                                | [L2][CO5] | [5M]  |
| 8  |            | Explain why Traveling Sales person Decision Problem is NP-Hard with an example.           | [L2][CO5] | [10M] |
| 9  |            | Analyze Scheduling Identical Processors in NP Hard Scheduling Problem.                    | [L4][CO5] | [10M] |
| 10 |            | Describe Job Shop Scheduling in NP Hard Scheduling Problem.                               | [L1][CO5] | [10M] |

#### Prepared by: Mr. Ch. Sivasankar, Assistant Professor, CSIT Dept

R23